3.666 \(\int \frac {(d+e x)^{3/2} (f+g x)^2}{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\)

Optimal. Leaf size=181 \[ -\frac {8 g \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (2 a e^2 g-c d (3 e f-d g)\right )}{3 c^3 d^3 e \sqrt {d+e x}}+\frac {8 g^2 \sqrt {d+e x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 c^2 d^2 e}-\frac {2 \sqrt {d+e x} (f+g x)^2}{c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

[Out]

-2*(g*x+f)^2*(e*x+d)^(1/2)/c/d/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-8/3*g*(2*a*e^2*g-c*d*(-d*g+3*e*f))*(a*d
*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^3/d^3/e/(e*x+d)^(1/2)+8/3*g^2*(e*x+d)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e
*x^2)^(1/2)/c^2/d^2/e

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {866, 794, 648} \[ -\frac {8 g \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (2 a e^2 g-c d (3 e f-d g)\right )}{3 c^3 d^3 e \sqrt {d+e x}}+\frac {8 g^2 \sqrt {d+e x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 c^2 d^2 e}-\frac {2 \sqrt {d+e x} (f+g x)^2}{c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x)^(3/2)*(f + g*x)^2)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(-2*Sqrt[d + e*x]*(f + g*x)^2)/(c*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (8*g*(2*a*e^2*g - c*d*(3*e*
f - d*g))*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*c^3*d^3*e*Sqrt[d + e*x]) + (8*g^2*Sqrt[d + e*x]*Sqrt
[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*c^2*d^2*e)

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rule 794

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0] && (NeQ[m, 2] || Eq
Q[d, 0])

Rule 866

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(e*(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] - Dist[(e*g*n)/(c*(p + 1)), I
nt[(d + e*x)^(m - 1)*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
 NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] &
& LtQ[p, -1] && GtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {(d+e x)^{3/2} (f+g x)^2}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx &=-\frac {2 \sqrt {d+e x} (f+g x)^2}{c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {(4 g) \int \frac {\sqrt {d+e x} (f+g x)}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{c d}\\ &=-\frac {2 \sqrt {d+e x} (f+g x)^2}{c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {8 g^2 \sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c^2 d^2 e}-\frac {\left (4 g \left (2 a e^2 g-c d (3 e f-d g)\right )\right ) \int \frac {\sqrt {d+e x}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{3 c^2 d^2 e}\\ &=-\frac {2 \sqrt {d+e x} (f+g x)^2}{c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {8 g \left (2 a e^2 g-c d (3 e f-d g)\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c^3 d^3 e \sqrt {d+e x}}+\frac {8 g^2 \sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c^2 d^2 e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 88, normalized size = 0.49 \[ \frac {2 \sqrt {d+e x} \left (-8 a^2 e^2 g^2-4 a c d e g (g x-3 f)+c^2 d^2 \left (-3 f^2+6 f g x+g^2 x^2\right )\right )}{3 c^3 d^3 \sqrt {(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)^(3/2)*(f + g*x)^2)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(2*Sqrt[d + e*x]*(-8*a^2*e^2*g^2 - 4*a*c*d*e*g*(-3*f + g*x) + c^2*d^2*(-3*f^2 + 6*f*g*x + g^2*x^2)))/(3*c^3*d^
3*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

fricas [A]  time = 1.17, size = 147, normalized size = 0.81 \[ \frac {2 \, {\left (c^{2} d^{2} g^{2} x^{2} - 3 \, c^{2} d^{2} f^{2} + 12 \, a c d e f g - 8 \, a^{2} e^{2} g^{2} + 2 \, {\left (3 \, c^{2} d^{2} f g - 2 \, a c d e g^{2}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{3 \, {\left (c^{4} d^{4} e x^{2} + a c^{3} d^{4} e + {\left (c^{4} d^{5} + a c^{3} d^{3} e^{2}\right )} x\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)*(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

2/3*(c^2*d^2*g^2*x^2 - 3*c^2*d^2*f^2 + 12*a*c*d*e*f*g - 8*a^2*e^2*g^2 + 2*(3*c^2*d^2*f*g - 2*a*c*d*e*g^2)*x)*s
qrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)/(c^4*d^4*e*x^2 + a*c^3*d^4*e + (c^4*d^5 + a*c^3*d^3*e
^2)*x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)*(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Eval
uation time: 1.25Unable to transpose Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.01, size = 116, normalized size = 0.64 \[ -\frac {2 \left (c d x +a e \right ) \left (-g^{2} x^{2} c^{2} d^{2}+4 a c d e \,g^{2} x -6 c^{2} d^{2} f g x +8 a^{2} e^{2} g^{2}-12 a c d e f g +3 f^{2} c^{2} d^{2}\right ) \left (e x +d \right )^{\frac {3}{2}}}{3 \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {3}{2}} c^{3} d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)*(g*x+f)^2/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2),x)

[Out]

-2/3*(c*d*x+a*e)*(-c^2*d^2*g^2*x^2+4*a*c*d*e*g^2*x-6*c^2*d^2*f*g*x+8*a^2*e^2*g^2-12*a*c*d*e*f*g+3*c^2*d^2*f^2)
*(e*x+d)^(3/2)/c^3/d^3/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(3/2)

________________________________________________________________________________________

maxima [A]  time = 0.63, size = 98, normalized size = 0.54 \[ -\frac {2 \, f^{2}}{\sqrt {c d x + a e} c d} + \frac {4 \, {\left (c d x + 2 \, a e\right )} f g}{\sqrt {c d x + a e} c^{2} d^{2}} + \frac {2 \, {\left (c^{2} d^{2} x^{2} - 4 \, a c d e x - 8 \, a^{2} e^{2}\right )} g^{2}}{3 \, \sqrt {c d x + a e} c^{3} d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)*(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

-2*f^2/(sqrt(c*d*x + a*e)*c*d) + 4*(c*d*x + 2*a*e)*f*g/(sqrt(c*d*x + a*e)*c^2*d^2) + 2/3*(c^2*d^2*x^2 - 4*a*c*
d*e*x - 8*a^2*e^2)*g^2/(sqrt(c*d*x + a*e)*c^3*d^3)

________________________________________________________________________________________

mupad [B]  time = 3.43, size = 178, normalized size = 0.98 \[ -\frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}\,\left (\frac {\sqrt {d+e\,x}\,\left (16\,a^2\,e^2\,g^2-24\,a\,c\,d\,e\,f\,g+6\,c^2\,d^2\,f^2\right )}{3\,c^4\,d^4\,e}-\frac {2\,g^2\,x^2\,\sqrt {d+e\,x}}{3\,c^2\,d^2\,e}+\frac {4\,g\,x\,\left (2\,a\,e\,g-3\,c\,d\,f\right )\,\sqrt {d+e\,x}}{3\,c^3\,d^3\,e}\right )}{\frac {a}{c}+x^2+\frac {x\,\left (3\,c^4\,d^5+3\,a\,c^3\,d^3\,e^2\right )}{3\,c^4\,d^4\,e}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((f + g*x)^2*(d + e*x)^(3/2))/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2),x)

[Out]

-((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)*(((d + e*x)^(1/2)*(16*a^2*e^2*g^2 + 6*c^2*d^2*f^2 - 24*a*c*d*e
*f*g))/(3*c^4*d^4*e) - (2*g^2*x^2*(d + e*x)^(1/2))/(3*c^2*d^2*e) + (4*g*x*(2*a*e*g - 3*c*d*f)*(d + e*x)^(1/2))
/(3*c^3*d^3*e)))/(a/c + x^2 + (x*(3*c^4*d^5 + 3*a*c^3*d^3*e^2))/(3*c^4*d^4*e))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)*(g*x+f)**2/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________